Improving the Robustness of Representation Misdirection for Large Language Model Unlearning

Published: 01 Jan 2025, Last Modified: 20 May 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Representation Misdirection (RM) and variants are established large language model (LLM) unlearning methods with state-of-the-art performance. In this paper, we show that RM methods inherently reduce models' robustness, causing them to misbehave even when a single non-adversarial forget-token is in the retain-query. Toward understanding underlying causes, we reframe the unlearning process as backdoor attacks and defenses: forget-tokens act as backdoor triggers that, when activated in retain-queries, cause disruptions in RM models' behaviors, similar to successful backdoor attacks. To mitigate this vulnerability, we propose Random Noise Augmentation -- a model and method agnostic approach with theoretical guarantees for improving the robustness of RM methods. Extensive experiments demonstrate that RNA significantly improves the robustness of RM models while enhancing the unlearning performances.
Loading