A Snapshot of the Frontiers of Client Selection in Federated Learning

Published: 21 Dec 2022, Last Modified: 28 Feb 2023Accepted by TMLREveryoneRevisionsBibTeX
Abstract: Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early naïve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.
Certifications: Survey Certification
Submission Length: Long submission (more than 12 pages of main content)
Changes Since Last Submission: Cleaned up revision indicators for reviews and prepared the camera ready. No major changes as it is accepted "as is".
Assigned Action Editor: ~Kangwook_Lee1
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
Submission Number: 414