O-Edit: Orthogonal Subspace Editing for Language Model Sequential Editing

23 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: large language model, model editing, sequential editing
TL;DR: This paper introduces O-Edit and O-Edit+, orthogonal subspace editing methods for large language models that maintain orthogonal update directions during sequential edits.
Abstract: Large language models (LLMs) acquire knowledge during pre-training, but over time, this knowledge may become incorrect or outdated, necessitating updates after training. Knowledge editing techniques address this issue without the need for costly re-training. However, most existing methods are designed for single edits, and as the number of edits increases, they often cause a decline in the model's overall performance, posing significant challenges for sequential editing. To overcome this, we propose Orthogonal Subspace Editing, O-Edit. This algorithm orthogonalizes the direction of each knowledge update, minimizing interference between successive updates and reducing the impact of new updates on unrelated knowledge. Our approach does not require replaying previously edited data and processes each edit knowledge on time. It can perform thousands of edits on mainstream LLMs, achieving an average performance improvement that is 4.2 times better than existing methods while effectively preserving the model's performance on downstream tasks, all with minimal additional parameter overhead.
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2954
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview