Dendritic Neural Regression Model Trained by Chicken Swarm Optimization Algorithm for Bank Customer Churn Prediction

Published: 01 Jan 2023, Last Modified: 06 Aug 2024ICONIP (15) 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Recently, banks are constantly facing the problem of customers churning. Customer churn not only leads to a decline in bank funds and profits but also reduces its credit capacity and affects the bank’s operational management. As an important component of Customer Relationship Management, predicting customer churn has been increasingly urgent. Inspired by biological neurons, we build up a dendritic neural regression model (DNRM) with four layers, namely the synaptic layer, the dendritic layer, the membrane layer, and the soma layer for bank customer churn prediction. To pursue better prediction performance in this experiment, the Chicken Swarm Optimization (CSO) algorithm is defined as the training algorithm of DNRM. With the ability to balance exploration and exploitation, CSO is implemented to optimize and improve the accuracy of the DNRM. In this paper, we propose a novel dendritic neural regression model called CSO-DNRM for churn prediction, and the experimental results are based on a benchmark dataset from Kaggle. Compared with other algorithms and models, our proposed model obtains the highest accuracy of 92.27% and convergence speed in customer churn prediction. Due to the novel bionic algorithms and the pruning function of the model, it is evident that our proposed model has advantages in accuracy and computational speed in the field of customer churn prediction and can be widely applied in commercial bank customer relationship management.
Loading