FARE: Provably Fair Representation LearningDownload PDF

Published: 01 Feb 2023, Last Modified: 17 Sept 2023Submitted to ICLR 2023Readers: Everyone
Keywords: fairness, fair representation learning
TL;DR: We present the first provable fair representation learning method.
Abstract: Fair representation learning (FRL) is a popular class of methods aiming to produce fair classifiers via data preprocessing. However, recent work has shown that prior methods achieve worse accuracy-fairness tradeoffs than originally suggested by their results. This dictates the need for FRL methods that provide provable upper bounds on unfairness of any downstream classifier, a challenge yet unsolved. In this work we address this challenge and propose Fairness with Restricted Encoders (FARE), the first FRL method with provable fairness guarantees. Our key insight is that restricting the representation space of the encoder enables us to derive suitable fairness guarantees, while allowing empirical accuracy-fairness tradeoffs comparable to prior work. FARE instantiates this idea with a tree-based encoder, a choice motivated by inherent advantages of decision trees when applied in our setting. Crucially, we develop and apply a practical statistical procedure that computes a high-confidence upper bound on the unfairness of any downstream classifier. In our experimental evaluation on several datasets and settings we demonstrate that FARE produces tight upper bounds, often comparable with empirical results of prior methods, which establishes the practical value of our approach.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2210.07213/code)
22 Replies