Keywords: machine translation, synthetic data pre-training, toxicity and bias
Abstract: Pre-training is an effective technique for ensuring robust performance on a variety of machine learning tasks. It typically depends on large-scale crawled corpora that can result in toxic or biased models. Such data can also be problematic with respect to copyright, attribution, and privacy. Pre-training with synthetic tasks and data is a promising way of alleviating such concerns since no real-world information is ingested by the model. Our goal in this paper is to understand what makes for a good pre-trained model when using synthetic resources. We answer this question in the context of neural machine translation by considering two novel approaches to translation model pre-training. Our first approach studies the effect of pre-training on obfuscated data derived from a parallel corpus by mapping words to a vocabulary of `nonsense' tokens. Our second approach explores the effect of pre-training on procedurally generated synthetic parallel data that does not depend on any real human language corpus. Our empirical evaluation on multiple language pairs shows that, to a surprising degree, the benefits of pre-training can be realized even with obfuscated or purely synthetic parallel data. In our analysis, we consider the extent to which obfuscated and synthetic pre-training techniques can be used to mitigate the issue of hallucinated model toxicity.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/synthetic-pre-training-tasks-for-neural/code)
5 Replies
Loading