An Encryption Framework for Pre-Trained Neural NetworksDownload PDF

22 Sept 2022 (modified: 13 Feb 2023)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Abstract: Having consumed huge amounts of training data and computational resource, large-scale pre-trained models are often considered key assets of AI service providers. This raises an important problem: how to prevent these models from being maliciously copied when they are running on customer's computing device? We answer this question by adding a set of confusion neurons into the pre-trained model, where the position of these neurons is encoded into a few integers that are easy to be encrypted. We find that most often, a small portion of confusion neurons are able to effectively contaminate the pre-trained model. Thereafter, we extend our study to a bigger picture that the customers may develop algorithms to eliminate the effect of confusion neurons and recover the original network, and we show that our simple approach is somewhat capable of defending itself against the fine-tuning attack.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
4 Replies

Loading