Learning Enhanced Resolution-Wise Features For Human Pose EstimationDownload PDFOpen Website

2020 (modified: 07 Nov 2022)ICIP 2020Readers: Everyone
Abstract: Recently, multi-resolution networks (such as Hourglass, CPN, HRNet, etc.) have achieved significant performance on pose estimation by combining feature maps of various resolutions. In this paper, we propose a Resolution-wise Attention Module (RAM) and Gradual Pyramid Refinement (GPR), to learn enhanced resolution-wise feature maps for precise pose estimation. Specifically, RAM learns a group of weights to represent the different importance of feature maps across resolutions, and the GPR gradually merges every two feature maps from low to high resolutions to regress final human keypoint heatmaps. With the enhanced resolution-wise features learnt by CNN, we obtain more accurate human keypoint locations. The efficacies of our proposed methods are demonstrated on MS-COCO dataset, achieving state-of-the-art performance with average precision of 77.7 on COCO va12017 set and 77.0 on test-dev2017 set without using extra human keypoint training dataset.
0 Replies

Loading