Learning Multiplex Embeddings on Text-rich Networks with One Text Encoder

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: representation learning for computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Text-Rich Network, Representation Learning on Networks
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: In real-world scenarios, texts in a network are often linked by multiple semantic relations (e.g., papers in an academic network are referenced by other publications, written by the same author, or published in the same venue), where text documents and their relations form a multiplex text-rich network. Mainstream text representation learning methods use pretrained language models (PLMs) to generate one embedding for each text unit, expecting that all types of relations between texts can be captured by these single-view embeddings. However, this presumption does not hold particularly in multiplex text-rich networks. Along another line of work, multiplex graph neural networks (GNNs) directly initialize node attributes as a feature vector for node representation learning, but they cannot fully capture the semantics of the nodes’ associated texts. To bridge these gaps, we propose METERN, a new framework for learning Multiplex Embeddings on TExt-Rich Networks. In contrast to existing methods, METERN uses one text encoder to model the shared knowledge across relations and leverages a small number of parameters per relation to derive relation-specific representations. This allows the encoder to effectively capture the multiplex structures in the network while also preserving parameter efficiency. We conduct experiments on nine downstream tasks in five networks from both academic and e-commerce domains, where METERN outperforms baselines significantly and consistently. Code is available at https://anonymous.4open.science/r/METERN-ICLR24-C6CD.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3978
Loading