Ares: Inferring Error Specifications through Static Analysis

Published: 01 Jan 2019, Last Modified: 27 Sept 2024ASE 2019EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Misuse of APIs happens frequently due to misunderstanding of API semantics and lack of documentation. An important category of API-related defects is the error handling defects, which may result in security and reliability flaws. These defects can be detected with the help of static program analysis, provided that error specifications are known. The error specification of an API function indicates how the function can fail. Writing error specifications manually is time-consuming and tedious. Therefore, automatic inferring the error specification from API usage code is preferred. In this paper, we present Ares, a tool for automatic inferring error specifications for C code through static analysis. We employ multiple heuristics to identify error handling blocks and infer error specifications by analyzing the corresponding condition logic. Ares is evaluated on 19 real world projects, and the results reveal that Ares outperforms the state-of-the-art tool APEx by 37% in precision. Ares can also identify more error specifications than APEx. Moreover, the specifications inferred from Ares help find dozens of API-related bugs in well-known projects such as OpenSSL, among them 10 bugs are confirmed by developers. Video: https://youtu.be/nf1QnFAmu8Q. Repository: https://github.com/lc3412/Ares.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview