Abstract: Detection of small-sized targets is of paramount importance in many aerial vision-based applications. The commonly deployed low cost unmanned aerial vehicles (UAVs) for aerial scene analysis are highly resource constrained in nature. In this paper we propose a simple short and shallow network (SSSDet) to robustly detect and classify small-sized vehicles in aerial scenes. The proposed SSSDet is up to 4× faster, requires 4.4× less FLOPs, has 30× less parameters, requires 31× less memory space and provides better accuracy in comparison to existing state-of-the-art detectors. Thus, it is more suitable for hardware implementation in real-time applications. We also created a new airborne image dataset (ABD) by annotating 1396 new objects in 79 aerial images for our experiments. The effectiveness of the proposed method is validated on the existing VEDAI, DLR-3K, DOTA and Combined dataset. The SSSDet outperforms state-of-the-art detectors in term of accuracy, speed, compute and memory efficiency.
0 Replies
Loading