Abstract: With Internet growing exponentially, topic-specific web crawler is becoming more and more popular in the web data mining. How to order the unvisited URLs was studied deeply, we present the notion of concept similarity context graph, and propose a novel approach to topic-specific web crawler, which calculates the unvisited URLs’ prediction score by concepts’ similarity in Formal Concept Analysis (FCA), while improving the retrieval precision and recall ratio. We firstly build a concept lattice using the visited pages, extract the core concepts which reflect the user’s query topic from the concept lattice, and then construct our concept similarity context graph based on the semantic similarities between the core concepts and other concepts.
Loading