A Constant Approximation Algorithm for Sequential Random-Order No-Substitution k-Median ClusteringDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: k-median clustering, constant approximation, sequential algorithms
TL;DR: We give the first constant approximation algorithm for k-median clustering in the sequential no-substitution setting under a random arrival order.
Abstract: We study k-median clustering under the sequential no-substitution setting. In this setting, a data stream is sequentially observed, and some of the points are selected by the algorithm as cluster centers. However, a point can be selected as a center only immediately after it is observed, before observing the next point. In addition, a selected center cannot be substituted later. We give the first algorithm for this setting that obtains a constant approximation factor on the optimal cost under a random arrival order, an exponential improvement over previous work. This is also the first constant approximation guarantee that holds without any structural assumptions on the input data. Moreover, the number of selected centers is only quasi-linear in k. Our algorithm and analysis are based on a careful cost estimation that avoids outliers, a new concept of a linear bin division, and a multi-scale approach to center selection.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
11 Replies