Normalized/Clipped SGD with Perturbation for Differentially Private Non-Convex Optimization

TMLR Paper1670 Authors

11 Oct 2023 (modified: 07 Apr 2024)Rejected by TMLREveryoneRevisionsBibTeX
Abstract: By ensuring differential privacy in the learning algorithms, one can rigorously mitigate the risk of large models memorizing sensitive training data. In this paper, we study two algorithms for this purpose, i.e., DP-SGD and DP-NSGD, which first clip or normalize \textit{per-sample} gradients to bound the sensitivity and then add noise to obfuscate the exact information. We analyze the convergence behavior of these two algorithms in the non-convex empirical risk minimization setting with two common assumptions and achieve a rate $\mathcal{O}\left(\sqrt[4]{\frac{d\log(1/\delta)}{N^2\epsilon^2}}\right)$ of the gradient norm for a $d$-dimensional model, $N$ samples and $(\epsilon,\delta)$-DP, which improves over previous bounds under much weaker assumptions. Specifically, we introduce a regularizing factor in DP-NSGD and show that it is crucial in the convergence proof and subtly controls the bias and noise trade-off. Our proof deliberately handles the per-sample gradient clipping and normalization that are specified for the private setting. Empirically, we demonstrate that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Antti_Honkela1
Submission Number: 1670
Loading