Hard-label Manifolds: Unexpected advantages of query efficiency for finding on-manifold adversarial examplesDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: hard-label attacks, adversarial machine learning, generalization
Abstract: Designing deep networks robust to adversarial examples remains an open problem. Likewise, recent zeroth order hard-label attacks on image classification tasks have shown comparable performance to their first-order alternatives. It is well known that in this setting, the adversary must search for the nearest decision boundary in a query-efficient manner. State-of-the-art (SotA) attacks rely on the concept of pixel grouping, or super-pixels, to perform efficient boundary search. It was recently shown in the first-order setting, that regular adversarial examples leave the data manifold, and on-manifold examples are generalization errors. In this paper, we argue that query efficiency in the zeroth-order setting is connected to the adversary's traversal through the data manifold. In particular, query-efficient hard-label attacks have the unexpected advantage of finding adversarial examples close to the data manifold. We empirically demonstrate that against both natural and robustly trained models, an efficient zeroth-order attack produces samples with a progressively smaller manifold distance measure. Further, when a normal zeroth-order attack is made query-efficient through the use of pixel grouping, it can make up to a two-fold increase in query efficiency, and in some cases, reduce a sample's distance to the manifold by an order of magnitude.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Reviewed Version (pdf): https://openreview.net/references/pdf?id=dxxvrwMQiv
12 Replies

Loading