Keywords: Diffusion Model, Active Target Discovery
Abstract: In many scientific and engineering fields, where acquiring high-quality data is expensive—such as medical imaging, environmental monitoring, and remote sensing—strategic sampling of unobserved regions based on prior observations is crucial for maximizing discovery rates within a constrained budget. The rise of powerful generative models, such as diffusion models, has enabled active target discovery in partially observable environments by leveraging learned priors—probabilistic representations that capture underlying structure from data. With guidance from sequentially gathered task-specific observations, these models can progressively refine exploration and efficiently direct queries toward promising regions. However, in domains where learning a strong prior is infeasible due to extremely limited data or high sampling cost (such as rare species discovery, diagnostics for emerging diseases, etc.), these methods struggle to generalize. To overcome this limitation, we propose a novel approach that enables effective active target discovery even in settings with uninformative priors, ensuring robust exploration and adaptability in complex real-world scenarios. Our framework is theoretically principled and draws inspiration from neuroscience to guide its design. Unlike black-box policies, our approach is inherently interpretable, providing clear insights into decision-making. Furthermore, it guarantees a strong, monotonic improvement in prior estimates with each new observation, leading to increasingly accurate sampling and reinforcing both reliability and adaptability in dynamic settings. Through comprehensive experiments and ablation studies across various domains, including species distribution modeling and remote sensing, we demonstrate that our method substantially outperforms baseline approaches.
Supplementary Material: zip
Primary Area: General machine learning (supervised, unsupervised, online, active, etc.)
Submission Number: 18653
Loading