ViSioNS: Visual Search in Natural Scenes BenchmarkDownload PDF

06 Jun 2022, 15:56 (modified: 14 Oct 2022, 06:30)NeurIPS 2022 Datasets and Benchmarks Readers: Everyone
Keywords: visual search, eye movements, computational models of human behavior, ideal bayesian observer
TL;DR: This paper builds a benchmark for comparing state-of-the-art human visual search models on different datasets comprising eye movements in natural scenes, discussing their limitations and how their integration could lead to performance improvements.
Abstract: Visual search is an essential part of almost any everyday human interaction with the visual environment. Nowadays, several algorithms are able to predict gaze positions during simple observation, but few models attempt to simulate human behavior during visual search in natural scenes. Furthermore, these models vary widely in their design and exhibit differences in the datasets and metrics with which they were evaluated. Thus, there is a need for a reference point, on which each model can be tested and from where potential improvements can be derived. In this study, we select publicly available state-of-the-art visual search models and datasets in natural scenes, and provide a common framework for their evaluation. To this end, we apply a unified format and criteria, bridging the gaps between them, and we estimate the models’ efficiency and similarity with humans using a specific set of metrics. This integration has allowed us to enhance the Ideal Bayesian Searcher by combining it with a neural network-based visual search model, which enables it to generalize to other datasets. The present work sheds light on the limitations of current models and how integrating different approaches with a unified criteria can lead to better algorithms. Moreover, it moves forward on bringing forth a solution for the urgent need for benchmarking data and metrics to support the development of more general human visual search computational models. All of the code used here, including metrics, plots, and visual search models, alongside the preprocessed datasets, are available at $\url{}$.
Supplementary Material: pdf
License: MIT License Copyright (c) 2021 Fermin Travi Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Author Statement: Yes
Contribution Process Agreement: Yes
In Person Attendance: No
7 Replies