Abstract: In this paper, we propose an approach for dynamic hand gesture recognition, which exploits depth and skeleton joint data captured by Kinect™ sensor. Also, we select the most relevant points in the hand trajectory with our proposed method to extract keyframes, reducing the processing time in a video. In addition, this approach combines pose and motion information of a dynamic hand gesture, taking advantage of the transfer learning property of CNNs. First, we use the optical flow method to generate a flow image for each keyframe, next we extract the pose and motion information using two pre-trained CNNs: a CNN-flow for flow-images and a CNN-pose for depth-images. Finally, we analyze different schemes to fusion both informations in order to achieve the best method. The proposed approach was evaluated in different datasets, achieving promising results compared to other methods, outperforming state-of-the-art methods.
0 Replies
Loading