FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations

19 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: federated learning, differential privacy
TL;DR: We propose FedLAP-DP, a novel formulation facilitating non-iid federated optimization via communicating differentially private synthetic samples that approximate local loss landscapes on the clients.
Abstract: This work proposes FedLAP-DP, a novel privacy-preserving approach for federated learning. Unlike previous linear point-wise gradient-sharing schemes, such as FedAvg, our formulation enables a type of global optimization by leveraging synthetic samples received from clients. These synthetic samples, serving as loss surrogates, approximate local loss landscapes by simulating the utility of real images within a local region. We additionally introduce an approach to measure effective approximation regions reflecting the quality of the approximation. Therefore, the server can recover an approximation of the global loss landscape and optimize the model globally. Moreover, motivated by the emerging privacy concerns, we demonstrate that our approach seamlessly works with record-level differential privacy (DP), granting theoretical privacy guarantees for every data record on the clients. Extensive results validate the efficacy of our formulation on various datasets with highly skewed distributions. Our method consistently improves over the baselines, especially considering highly skewed distributions and noisy gradients due to DP. The source code will be released upon publication.
Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2109
Loading