RealHD: A High-Quality Dataset for Robust Detection of State-of-the-Art AI-Generated Images

Hanzhe Yu, Yun Ye, Jintao Rong, Qi Xuan, Chen Ma

Published: 27 Oct 2025, Last Modified: 24 Nov 2025CrossrefEveryoneRevisionsCC BY-SA 4.0
Abstract: The rapid advancement of generative AI has raised concerns about the authenticity of digital images, as highly realistic fake images can now be generated at low cost, potentially increasing societal risks. In response, several datasets have been established to train detection models aimed at distinguishing AI-generated images from real ones. However, existing datasets suffer from limited generalization, low image quality, overly simple prompts, and insufficient image diversity. To address these limitations, we propose a high-quality, large-scale dataset comprising over 730,000 images across multiple categories, including both real and AI-generated images. The generated images are synthesized via state-of-the-art methods, including text-to-image generation (guided by over 10,000 carefully designed prompts), image inpainting, image refinement, and face swapping. Each generated image is annotated with its generation method and category. Inpainting images further include binary masks to indicate inpainted regions, providing rich metadata for analysis. Compared to existing datasets, detection models trained on our dataset demonstrate superior generalization capabilities. Our dataset not only serves as a strong benchmark for evaluating detection methods but also contributes to advancing the robustness of AI-generated image detection techniques. Building upon this, we propose a lightweight detection method based on image noise entropy, which transforms the original image into an entropy tensor of Non-Local Means (NLM) noise before classification. Extensive experiments demonstrate that models trained on our dataset achieve strong generalization, and our method delivers competitive performance, establishing a solid baseline for future research. The dataset and source code are publicly available at https://real-hd.github.io.
Loading