Federated Node Classification over Graphs with Latent Link-type Heterogeneity

Published: 01 Jan 2023, Last Modified: 28 Sept 2024WWW 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Federated learning (FL) aims to train powerful and generalized global models without putting distributed data together, which has been shown effective in various domains of machine learning. The non-IIDness of data across local clients has been a major challenge for FL. In graphs, one specifically important perspective of non-IIDness is manifested in the link-type heterogeneity underlying homogeneous graphs– the seemingly uniform links captured in most real-world networks can carry different levels of homophily or semantics of relations, while the exact sets and distributions of such latent link-types can further differ across local clients. Through our preliminary data analysis, we are motivated to design a new graph FL framework that can simultaneously discover latent link-types and model message-passing w.r.t. the discovered link-types through the collaboration of distributed local clients. Specifically, we propose a framework FedLit that can dynamically detect the latent link-types during FL via an EM-based clustering algorithm and differentiate the message-passing through different types of links via multiple convolution channels. For experiments, we synthesize multiple realistic datasets of graphs with latent heterogeneous link-types from real-world data, and partition them with different levels of link-type heterogeneity. Comprehensive experimental results and in-depth analysis have demonstrated both superior performance and rational behaviors of our proposed techniques.
Loading