Keywords: poisoning, robustness, subpopulations
TL;DR: We investigate the connection between model complexity and vulnerability to subpopulation-targeted poisoning attacks for real-world overparameterized models and datasets
Abstract: As machine learning models become increasingly complex, concerns about their robustness and trustworthiness have become more pressing. A critical vulnerability of these models is data poisoning attacks, where adversaries deliberately alter training data to degrade model performance. One particularly stealthy form of these attacks is subpopulation poisoning, which targets distinct subgroups within a dataset while leaving overall performance largely intact. The ability of these attacks to generalize within subpopulations poses a significant risk in real-world settings, as they can be exploited to harm marginalized or underrepresented groups within the dataset. In this work, we investigate how model complexity influences susceptibility to subpopulation poisoning attacks. We introduce a theoretical
framework that explains how models with locally dependent learning behavior—a characteristic exhibited by overparameterized models—can misclassify arbitrary subpopulations. To validate our theory, we conduct extensive experiments on large-scale image and text datasets using popular model architectures. Our results show a clear trend: models with more parameters are significantly more vulnerable to subpopulation poisoning. Moreover, we find that attacks on smaller, human-interpretable subgroups often go undetected by these models. These results highlight the need for developing defenses that specifically address subpopulation vulnerabilities.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12397
Loading