NeRF-Diffusion for 3D-Consistent Face Generation and Editing

Published: 01 Jan 2024, Last Modified: 28 Sept 2024VISIGRAPP (2): VISAPP 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Generating high-fidelity 3D-aware images without 3D supervision is a valuable capability in various applications. Current methods based on NeRF features, SDF information, or triplane features have limited variation after training. To address this, we propose a novel approach that combines pretrained models for shape and content generation. Our method leverages a pretrained Neural Radiance Field as a shape prior and a diffusion model for content generation. By conditioning the diffusion model with 3D features, we enhance its ability to generate novel views with 3D awareness. We introduce a consistency token shared between the NeRF module and the diffusion model to maintain 3D consistency during sampling. Moreover, our framework allows for text editing of 3D-aware image generation, enabling users to modify the style over 3D views while preserving semantic content. Our contributions include incorporating 3D awareness into a text-to-image model, addressing identity consistency in 3D view
Loading