Benchmarking Algorithms for Federated Domain Generalization

Published: 16 Jan 2024, Last Modified: 10 Apr 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: federated learning, distributed learning, domain generalization, out-of-distribution generalization, benchmarking, data paritioning.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: While prior federated learning (FL) methods mainly consider client heterogeneity, we focus on the *Federated Domain Generalization (DG)* task, which introduces train-test heterogeneity in the FL context. Existing evaluations in this field are limited in terms of the scale of the clients and dataset diversity. Thus, we propose a Federated DG benchmark that aim to test the limits of current methods with high client heterogeneity, large numbers of clients, and diverse datasets. Towards this objective, we introduce a novel data partition method that allows us to distribute any domain dataset among few or many clients while controlling client heterogeneity. We then introduce and apply our methodology to evaluate 14 DG methods, which include centralized DG methods adapted to the FL context, FL methods that handle client heterogeneity, and methods designed specifically for Federated DG on 7 datasets. Our results suggest that, despite some progress, significant performance gaps remain in Federated DG, especially when evaluating with a large number of clients, high client heterogeneity, or more realistic datasets. Furthermore, our extendable benchmark code will be publicly released to aid in benchmarking future Federated DG approaches.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: datasets and benchmarks
Submission Number: 7354
Loading