The Power of LLM-Generated Synthetic Data for Stance Detection in Online Political Discussions

ICLR 2025 Conference Submission6567 Authors

26 Sept 2024 (modified: 02 Dec 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: large language models, stance detection, data augmentation, active learning, online political discussions
TL;DR: We study and show how to leverage LLM-generated synthetic data for stance detection in online discussions, which is a challenging stance detection task because of the broad range of debate questions.
Abstract: Stance detection holds great potential to improve online political discussions through its deployment in discussion platforms for purposes such as content moderation, topic summarisation or to facilitate more balanced discussions. Typically, transformer-based models are employed directly for stance detection, requiring vast amounts of data. However, the wide variety of debate topics in online political discussions makes data collection particularly challenging. LLMs have revived stance detection, but their online deployment in online political discussions faces challenges like inconsistent outputs, biases, and vulnerability to adversarial attacks. We show how LLM-generated synthetic data can improve stance detection for online political discussions by using reliable traditional stance detection models for online deployment, while leveraging the text generation capabilities of LLMs for synthetic data generation in a secure offline environment. To achieve this, (i) we generate synthetic data for specific debate questions by prompting a Mistral-7B model and show that fine-tuning with the generated synthetic data can substantially improve the performance of stance detection, while remaining interpretable and aligned with real world data. (ii) Using the synthetic data as a reference, we can improve performance even further by identifying the most informative samples in an unlabelled dataset, i.e., those samples which the stance detection model is most uncertain about and can benefit from the most. By fine-tuning with both synthetic data and the most informative samples, we surpass the performance of the baseline model that is fine-tuned on all true labels, while labelling considerably less data.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6567
Loading