Sherlock: A Semi-automatic Framework for Quiz Generation Using a Hybrid Semantic Similarity MeasureDownload PDFOpen Website

2015 (modified: 17 Nov 2021)Cogn. Comput. 2015Readers: Everyone
Abstract: In this paper, we present a semi-automatic system (Sherlock) for quiz generation using linked data and textual descriptions of RDF resources. Sherlock is distinguished from existing quiz generation systems in its generic framework for domain-independent quiz generation as well as in the ability of controlling the difficulty level of the generated quizzes. Difficulty scaling is non-trivial, and it is fundamentally related to cognitive science. We approach the problem with a new angle by perceiving the level of knowledge difficulty as a similarity measure problem and propose a novel hybrid semantic similarity measure using linked data. Extensive experiments show that the proposed semantic similarity measure outperforms four strong baselines with more than 47 % gain in clustering accuracy. In addition, we discovered in the human quiz test that the model accuracy indeed shows a strong correlation with the pairwise quiz similarity.
0 Replies

Loading