Keywords: Bayesian Quadrature, Probabilistic Numerics, Gaussian Process, Conditional Expectation
TL;DR: We propose a novel approach for estimating conditional expectations through the framework of Bayesian quadrature with a fast convergence rate.
Abstract: We propose a novel approach for estimating conditional or parametric expectations in the setting where obtaining samples or evaluating integrands is costly. Through the framework of probabilistic numerical methods (such as Bayesian quadrature), our novel approach allows to incorporates prior information about the integrands especially the prior smoothness knowledge about the integrands and the conditional expectation. As a result, our approach provides a way of quantifying uncertainty and leads to a fast convergence rate, which is confirmed both theoretically and empirically on challenging tasks in Bayesian sensitivity analysis, computational finance and decision making under uncertainty.
List Of Authors: Chen, Zonghao and Naslidnyk, Masha and Gretton, Arthur and Briol, Francois-Xavier
Latex Source Code: zip
Signed License Agreement: pdf
Code Url: https://github.com/hudsonchen/CBQ
Submission Number: 286
Loading