Scalable and Transferable Black-Box Jailbreaks for Language Models via Persona Modulation

Published: 23 Oct 2023, Last Modified: 28 Nov 2023SoLaR PosterEveryoneRevisionsBibTeX
Keywords: Red-teaming; Auditing; Evaluations
Abstract: Despite efforts to align large language models to produce harmless responses, they are still vulnerable to jailbreak prompts that elicit unrestricted behaviour. In this work, we investigate persona modulation as a black-box jailbreaking method to steer a target model to take on personalities that are willing to comply with harmful instructions. Rather than manually crafting prompts for each persona, we automate the generation of jailbreaks using a language model assistant. We demonstrate a range of harmful completions made possible by persona modulation, including detailed instructions for synthesising methamphetamine, building a bomb, and laundering money. These automated attacks achieve a harmful completion rate of 42.5% in GPT-4, which is 185 times larger than before modulation (0.23%). These prompts also transfer to Claude 2 and Vicuna with harmful completion rates of 61.0% and 35.9%, respectively. Our work reveals yet another vulnerability in commercial large language models and highlights the need for more comprehensive safeguards.
Submission Number: 47