Keywords: Isometric regularization, Geometric reularization, Implicit Neural Representation, Manifold Learning, Neural SDF, Neural BRDF, Neural Operator
TL;DR: We present isometric regularization for manifolds of functional data, leading to robust data representation learning.
Abstract: While conventional data are represented as discrete vectors, Implicit Neural Representations (INRs) utilize neural networks to represent data points as continuous functions. By incorporating a shared network that maps latent vectors to individual functions, one can model the distribution of functional data, which has proven effective in many applications, such as learning 3D shapes, surface reflectance, and operators.
However, the infinite-dimensional nature of these representations makes them prone to overfitting, necessitating sufficient regularization. Naïve regularization methods -- those commonly used with discrete vector representations -- may enforce smoothness to increase robustness but result in a loss of data fidelity due to improper handling of function coordinates.
To overcome these challenges, we start by interpreting the mapping from latent variables to INRs as a parametrization of a Riemannian manifold. We then recognize that preserving geometric quantities -- such as distances and angles -- between the latent space and the data manifold is crucial. As a result, we obtain a manifold with minimal intrinsic curvature, leading to robust representations while maintaining high-quality data fitting. Our experiments on various data modalities demonstrate that our method effectively discovers a well-structured latent space, leading to robust data representations even for challenging datasets, such as those that are small or noisy.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4072
Loading