Co-evolving online high-frequency trading strategies using grammatical evolution

Published: 01 Jan 2014, Last Modified: 01 Aug 2024CIFEr 2014EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Numerous sophisticated algorithms exist for discovering reoccurring patterns in financial time series. However, the most accurate techniques available produce opaque models, from which it is impossible to discern the rationale behind trading decisions. It is therefore desirable to sacrifice some degree of accuracy for transparency. One fairly recent evolutionary computational technology that creates transparent models, using a user-specified grammar, is grammatical evolution (GE). In this paper, we explore the possibility of evolving transparent entry- and exit trading strategies for the E-mini S&P 500 index futures market in a high-frequency trading environment using grammatical evolution. We compare the performance of models incorporating risk into their calculations with models that do not. Our empirical results suggest that profitable, risk-averse, transparent trading strategies for the E-mini S&P 500 can be obtained using grammatical evolution together with technical indicators.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview