Gaussian Processes for Slice-Based Super-Resolution MR ImagesOpen Website

2015 (modified: 19 Apr 2023)ISVC (2) 2015Readers: Everyone
Abstract: Magnetic resonance imaging (MRI) is a medical technique used in radiology to obtain anatomical images of healthy and pathological tissues. Due to hardware limitations and clinical protocols, MRI data are often acquired with low-resolution. For this reason, the scientific community has been developing super-resolution (SR) methodologies in order to enhance spatial resolution through post-processing of 2D multi-slice images. The enhancement of spatial resolution in magnetic resonance (MR) images improves clinical procedures such as tissue segmentation, registration and disease diagnosis. Several methods to perform SR-MR images have been proposed. However, they present different drawbacks: sensitivity to noise, high computational cost, and complex optimization algorithms. In this paper, we develop a supervised learning methodology to perform SR-MR images using a patch-based Gaussian process regression (GPR) method. We compare our approach with nearest-neighbor interpolation, B-splines and a SR-GPR scheme based on nearest-neighbors. We test our SR-GPR algorithm in MRI-T1 and MRI-T2 studies, evaluating the performance through error metrics and morphological validation (tissue segmentation). Results obtained with our methodology outperform the other alternatives for all validation protocols.
0 Replies

Loading