Keywords: multimodal representation learning; contrastive learning; protein language models; geometric deep learning
TL;DR: We design and combine domain-informed views into multi-modal contrastive learning for protein representations
Abstract: Proteins, often represented as multi-modal data of 1D sequences and 2D/3D structures, provide a motivating example for the communities of machine learning and computational biology to advance multi-modal representation learning. Protein language models over sequences and geometric deep learning over structures learn excellent single-modality representations for downstream tasks. It is thus desirable to fuse the single-modality models for better representation learning, but it remains an open question on how to fuse them effectively into multi-modal representation learning with a modest computational cost yet significant downstream performance gain. To answer the question, we propose to make use of separately pretrained single-modality models, integrate them in parallel connections, and continuously pretrain them end-to-end under the framework of multimodal contrastive learning. The technical challenge is to construct views for both intra- and inter-modality contrasts while addressing the heterogeneity of various modalities, particularly various levels of semantic robustness. We address the challenge by using domain knowledge of protein homology to inform the design of positive views, specifically protein classifications of families (based on similarities in sequences) and superfamilies (based on similarities in structures). We also assess the use of such views compared to, together with, and composed to other positive views such as identity and cropping. Extensive experiments on enzyme classification and protein function prediction benchmarks demonstrate the potential of domain-informed view construction and combination in multi-modal contrastive learning.
Submission Number: 41
Loading