Keywords: Time series, Imputation
Abstract: Missing data imputation through distribution alignment has demonstrated advantages for non-temporal datasets but exhibits suboptimal performance in time-series applications. The primary obstacle is crafting a discrepancy measure that simultaneously (1) captures temporal patterns—accounting for periodicity and temporal dependencies inherent in time-series—and (2) accommodates non-stationarity, ensuring robustness amidst multiple coexisting temporal patterns. In response to these challenges, we introduce the Proximal Spectrum Wasserstein (PSW) discrepancy, a novel discrepancy tailored for comparing two \textit{sets} of time-series based on optimal transport. It incorporates a pairwise spectral distance to encapsulate temporal patterns, and a selective matching regularization to accommodate non-stationarity. Subsequently, we develop the PSW for Imputation (PSW-I) framework, which iteratively refines imputation results by minimizing the PSW discrepancy. Extensive experiments demonstrate that PSW-I effectively accommodates temporal patterns and non-stationarity, outperforming prevailing time-series imputation methods. Code is available at https://github.com/FMLYD/PSW-I.
Primary Area: learning on time series and dynamical systems
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 14099
Loading