Generalized DataWeighting via Class-Level Gradient ManipulationDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: instance weighting, meta-learning, bi-level optimization, classification, chain rule
TL;DR: We propose Generalized Data Weighting (GDW) to simultaneously mitigate label noise and class imbalance by manipulating gradients at the class level.
Abstract: Label noise and class imbalance are two major issues coexisting in real-world datasets. To alleviate the two issues, state-of-the-art methods reweight each instance by leveraging a small amount of clean and unbiased data. Yet, these methods overlook class-level information within each instance, which can be further utilized to improve performance. To this end, in this paper, we propose Generalized Data Weighting (GDW) to simultaneously mitigate label noise and class imbalance by manipulating gradients at the class level. To be specific, GDW unrolls the loss gradient to class-level gradients by the chain rule and reweights the flow of each gradient separately. In this way, GDW achieves remarkable performance improvement on both issues. Aside from the performance gain, GDW efficiently obtains class-level weights without introducing any extra computational cost compared with instance weighting methods. Specifically, GDW performs a gradient descent step on class-level weights, which only relies on intermediate gradients. Extensive experiments in various settings verify the effectiveness of GDW. For example, GDW outperforms state-of-the-art methods by $2.56\%$ under the $60\%$ uniform noise setting in CIFAR10. Our code is available at https://github.com/GGchen1997/GDW-NIPS2021.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
Code: https://github.com/GGchen1997/GDW-NIPS2021
15 Replies

Loading