Unmasking the Lottery Ticket Hypothesis: What's Encoded in a Winning Ticket's Mask?Download PDF

Published: 01 Feb 2023, Last Modified: 14 Apr 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: linear mode connectivity, iterative magnitude pruning, loss landscape geometry, lottery ticket hypothesis, sparsity
Abstract: As neural networks get larger and costlier, it is important to find sparse networks that require less compute and memory but can be trained to the same accuracy as the full network (i.e. matching). Iterative magnitude pruning (IMP) is a state of the art algorithm that can find such highly sparse matching subnetworks, known as winning tickets. IMP iterates through cycles of training, pruning a fraction of smallest magnitude weights, rewinding unpruned weights back to an early training point, and repeating. Despite its simplicity, the principles underlying when and how IMP finds winning tickets remain elusive. In particular, what useful information does an IMP mask found at the end of training convey to a rewound network near the beginning of training? How does SGD allow the network to extract this information? And why is iterative pruning needed, i.e. why can't we prune to very high sparsities in one shot? We investigate these questions through the lens of the geometry of the error landscape. First, we find that—at higher sparsities—pairs of pruned networks at successive pruning iterations are connected by a linear path with zero error barrier if and only if they are matching. This indicates that masks found at the end of training convey to the rewind point the identity of an axial subspace that intersects a desired linearly connected mode of a matching sublevel set. Second, we show SGD can exploit this information due to a strong form of robustness: it can return to this mode despite strong perturbations early in training. Third, we show how the flatness of the error landscape at the end of training limits the fraction of weights that can be pruned at each iteration of IMP. This analysis yields a new quantitative link between IMP performance and the Hessian eigenspectrum. Finally, we show that the role of retraining in IMP is to find a network with new small weights to prune. Overall, these results make progress toward demystifying the existence of winning tickets by revealing the fundamental role of error landscape geometry in the algorithms used to find them.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
TL;DR: We provide an error landscape perspective on what information is encoded in a winning ticket's mask and how Iterative Magnitude Pruning finds matching subnetworks.
13 Replies

Loading