Towards Data-Agnostic Pruning At Initialization: What Makes a Good Sparse Mask?

Published: 21 Sept 2023, Last Modified: 02 Nov 2023NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: Pruning Neural Network, Sparsity, Neural Architecture Search
TL;DR: Our paper gives new perspectives on pruning at initialization from the configuration of subnetwork (particularly effective paths and nodes) to better design pruning algorithms.
Abstract: Pruning at initialization (PaI) aims to remove weights of neural networks before training in pursuit of training efficiency besides the inference. While off-the-shelf PaI methods manage to find trainable subnetworks that outperform random pruning, their performance in terms of both accuracy and computational reduction is far from satisfactory compared to post-training pruning and the understanding of PaI is missing. For instance, recent studies show that existing PaI methods only able to find good layerwise sparsities not weights, as the discovered subnetworks are surprisingly resilient against layerwise random mask shuffling and weight re-initialization. In this paper, we study PaI from a brand-new perspective -- the topology of subnetworks. In particular, we propose a principled framework for analyzing the performance of Pruning and Initialization (PaI) methods with two quantities, namely, the number of effective paths and effective nodes. These quantities allow for a more comprehensive understanding of PaI methods, giving us an accurate assessment of different subnetworks at initialization. We systematically analyze the behavior of various PaI methods through our framework and observe a guiding principle for constructing effective subnetworks: *at a specific sparsity, the top-performing subnetwork always presents a good balance between the number of effective nodes and the number of effective paths.* Inspired by this observation, we present a novel data-agnostic pruning method by solving a multi-objective optimization problem. By conducting extensive experiments across different architectures and datasets, our results demonstrate that our approach outperforms state-of-the-art PaI methods while it is able to discover subnetworks that have much lower inference FLOPs (up to 3.4$\times$). Code will be fully released.
Supplementary Material: pdf
Submission Number: 11222