Co-Mining: Deep Face Recognition With Noisy LabelsDownload PDFOpen Website

2019 (modified: 02 Nov 2022)ICCV 2019Readers: Everyone
Abstract: Face recognition has achieved significant progress with the growing scale of collected datasets, which empowers us to train strong convolutional neural networks (CNNs). While a variety of CNN architectures and loss functions have been devised recently, we still have a limited understanding of how to train the CNN models with the label noise inherent in existing face recognition datasets. To address this issue, this paper develops a novel co-mining strategy to effectively train on the datasets with noisy labels. Specifically, we simultaneously use the loss values as the cue to detect noisy labels, exchange the high-confidence clean faces to alleviate the errors accumulated issue caused by the sample-selection bias, and re-weight the predicted clean faces to make them dominate the discriminative model training in a mini-batch fashion. Extensive experiments by training on three popular datasets (\textit{i.e.}, CASIA-WebFace, MS-Celeb-1M and VggFace2) and testing on several benchmarks, including LFW, AgeDB, CFP, CALFW, CPLFW, RFW, and MegaFace, have demonstrated the effectiveness of our new approach over the state-of-the-art alternatives.
0 Replies

Loading