A computational approach for mapping electrochemical activity of multi-principal element alloys

Jodie A. Yuwono, Xinyu Li, Tyler D. Doležal, Adib J. Samin, Javen Qinfeng Shi, Zhipeng Li, Nick Birbilis

Published: 10 Nov 2023, Last Modified: 07 Nov 2025npj Materials DegradationEveryoneRevisionsCC BY-SA 4.0
Abstract: Multi principal element alloys (MPEAs) comprise an atypical class of metal alloys. MPEAs have been demonstrated to possess several exceptional properties, including, as most relevant to the present study a high corrosion resistance. In the context of MPEA design, the vast number of potential alloying elements and the staggering number of elemental combinations favours a computational alloy design approach. In order to computationally assess the prospective corrosion performance of MPEA, an approach was developed in this study. A density functional theory (DFT) – based Monte Carlo method was used for the development of MPEA ‘structure’; with the AlCrTiV alloy used as a model. High-throughput DFT calculations were performed to create training datasets for surface activity/selectivity towards different adsorbate species: O2-, Cl- and H+. Machine-learning (ML) with combined representation was then utilised to predict the adsorption and vacancy energies as descriptors for surface activity/selectivity. The capability of the combined computational methods of MC, DFT and ML, as a virtual electrochemical performance simulator for MPEAs was established and may be useful in exploring other MPEAs.
Loading