Optimistic Games for Combinatorial Bayesian Optimization with Application to Protein Design

Published: 22 Jan 2025, Last Modified: 24 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Combinatorial Bayesian Optimization, Game Theory, Gaussian Processes, Protein Design
Abstract: Bayesian optimization (BO) is a powerful framework to optimize black-box expensive-to-evaluate functions via sequential interactions. In several important problems (e.g. drug discovery, circuit design, neural architecture search, etc.), though, such functions are defined over large $\textit{combinatorial and unstructured}$ spaces. This makes existing BO algorithms not feasible due to the intractable maximization of the acquisition function over these domains. To address this issue, we propose $\textbf{GameOpt}$, a novel game-theoretical approach to combinatorial BO. $\textbf{GameOpt}$ establishes a cooperative game between the different optimization variables, and selects points that are game $\textit{equilibria}$ of an upper confidence bound acquisition function. These are stable configurations from which no variable has an incentive to deviate$-$ analog to local optima in continuous domains. Crucially, this allows us to efficiently break down the complexity of the combinatorial domain into individual decision sets, making $\textbf{GameOpt}$ scalable to large combinatorial spaces. We demonstrate the application of $\textbf{GameOpt}$ to the challenging $\textit{protein design}$ problem and validate its performance on four real-world protein datasets. Each protein can take up to $20^{X}$ possible configurations, where $X$ is the length of a protein, making standard BO methods infeasible. Instead, our approach iteratively selects informative protein configurations and very quickly discovers highly active protein variants compared to other baselines.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6708
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview