FedHAR: Semi-Supervised Online Learning for Personalized Federated Human Activity RecognitionDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 18 Nov 2023IEEE Trans. Mob. Comput. 2023Readers: Everyone
Abstract: The advancement of smartphone sensors and wearable devices has enabled a new paradigm for smart human activity recognition (HAR), which has a broad range of applications in healthcare and smart cities. However, there are four challenges, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">privacy preservation</i> , <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">label scarcity</i> , <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">real-timing</i> , and <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">heterogeneity patterns</i> , to be addressed before HAR can be more applicable in real-world scenarios. To this end, in this paper, we propose a personalized federated HAR framework, named <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FedHAR</i> , to overcome all the above obstacles. Specially, as federated learning, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FedHAR</i> performs distributed learning, which allows training data to be kept local to protect users’ privacy. Also, for each client without activity labels, in <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FedHAR</i> , we design an algorithm to compute unsupervised gradients under the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">consistency training</i> proposition and an unsupervised gradient aggregation strategy is developed for overcoming the concept drift and convergence instability issues in online federated learning process. Finally, extensive experiments are conducted using two diverse real-world HAR datasets to show the advantages of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FedHAR</i> over state-of-the-art methods. In addition, when fine-tuning each unlabeled client, personalized <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FedHAR</i> can achieve additional 10% improvement across all metrics on average.
0 Replies

Loading