Deblurring Face Images Using Uncertainty Guided Multi-Stream Semantic NetworksDownload PDFOpen Website

2020 (modified: 02 Nov 2022)IEEE Trans. Image Process. 2020Readers: Everyone
Abstract: We propose a novel multi-stream architecture and training methodology that exploits semantic labels for facial image deblurring. The proposed Uncertainty Guided Multi-Stream Semantic Network (UMSN) processes regions belonging to each semantic class independently and learns to combine their outputs into the final deblurred result. Pixel-wise semantic labels are obtained using a segmentation network. A predicted confidence measure is used during training to guide the network towards the challenging regions of the human face such as the eyes and nose. The entire network is trained in an end-to-end fashion. Comprehensive experiments on three different face datasets demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art face deblurring methods. Code is available at: https://github.com/rajeevyasarla/UMSN-Face-Deblurring.
0 Replies

Loading