Keywords: Gaussian Splatting, 3D Generation, IP Verfication
TL;DR: InstantSplamp enables instant, efficient watermarking of 3D assets during generation, balancing quality and security for practical, large-scale deployment.
Abstract: With the rapid development of large generative models for 3D, especially the evolution from NeRF representations to more efficient Gaussian Splatting, the synthesis of 3D assets has become increasingly fast and efficient, enabling the large-scale publication and sharing of generated 3D objects. However, while existing methods can add watermarks or steganographic information to individual 3D assets, they often require time-consuming per-scene training and optimization, leading to watermarking overheads that can far exceed the time required for asset generation itself, making deployment impractical for generating large collections of 3D objects. To address this, we propose InstantSplamp a framework that seamlessly integrates the 3D steganography pipeline into large 3D generative models without introducing explicit additional time costs. Guided by visual foundation models,InstantSplamp subtly injects hidden information like copyright tags during asset generation, enabling effective embedding and recovery of watermarks within generated 3D assets while preserving original visual quality. Experiments across various potential deployment scenarios demonstrate that \model~strikes an optimal balance between rendering quality and hiding fidelity, as well as between hiding performance and speed. Compared to existing per-scene optimization techniques for 3D assets, InstantSplamp reduces their watermarking training overheads that are multiples of generation time to nearly zero, paving the way for real-world deployment at scale. Project page: https://gaussian-stego.github.io/.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9981
Loading