Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying SystemsDownload PDF

21 May 2021, 20:44 (edited 21 Jan 2022)NeurIPS 2021 SpotlightReaders: Everyone
  • Keywords: Linear time-varying system, Online convex optimization, Predictive control, Sensitivity analysis
  • TL;DR: We show regret and competitive ratio for predictive control in linear time varying system via a new perturbation analysis.
  • Abstract: We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for the future $k$ time steps. We show that when the prediction window $k$ is sufficiently large, predictive control is input-to-state stable and achieves a dynamic regret of $O(\lambda^k T)$, where $\lambda < 1$ is a positive constant. This is the first dynamic regret bound on the predictive control of linear time-varying systems. We also show a variation of predictive control obtains the first competitive bound for the control of linear time-varying systems: $1 + O(\lambda^k)$. Our results are derived using a novel proof framework based on a perturbation bound that characterizes how a small change to the system parameters impacts the optimal trajectory.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
11 Replies