Quantifying Knowledge Distillation using Partial Information Decomposition

Published: 22 Jan 2025, Last Modified: 11 Mar 2025AISTATS 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
TL;DR: We propose measures to quantify the distillable and distilled knowledge of a teacher model w.r.t. a student model and a given downstream task.
Abstract: Knowledge distillation deploys complex machine learning models in resource-constrained environments by training a smaller student model to emulate internal representations of a complex teacher model. However, the teacher's representations can also encode nuisance or additional information not relevant to the downstream task. Distilling such irrelevant information can actually impede the performance of a capacity-limited student model. This observation motivates our primary question: What are the information-theoretic limits of knowledge distillation? To this end, we leverage Partial Information Decomposition to quantify and explain the transferred knowledge and knowledge left to distill for a downstream task. We theoretically demonstrate that the task-relevant transferred knowledge is succinctly captured by the measure of redundant information about the task between the teacher and student. We propose a novel multi-level optimization to incorporate redundant information as a regularizer, leading to our framework of Redundant Information Distillation (RID). RID leads to more resilient and effective distillation under nuisance teachers as it succinctly quantifies task-relevant knowledge rather than simply aligning student and teacher representations.
Submission Number: 1701
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview