Robust hyperbolic tangent Geman-McClure adaptive filter based on NKP decomposition and its performance analysis

Published: 01 Jan 2024, Last Modified: 16 May 2025Signal Image Video Process. 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: For the identification of long impulse response systems in impulsive noise environments, existing algorithms have disadvantages such as slow convergence speed, large steady-state error, and poor tracking performance. In this brief, we propose the nearest Kronecker product decomposition based robust hyperbolic tangent Geman-McClure adaptive filter (NKP-HTGM) and analyze its performance. This algorithm uses the Geman-McClure function under hyperbolic tangent framework to remove the characteristic of the abnormal amplitude in the dataset, significantly improving the robustness against impulsive noise. Moreover, a novel variable step-size method (VSS) is introduced to further enhance the performance of NKP-HTGM (VSS-NKP-HTGM). Finally, the simulation results validate the effectiveness of the NKP-HTGM algorithm in system identification and the correctness of the theoretical analysis.
Loading