Graph Convolution Networks for Seismic Events Classification Using Raw Waveform Data From Multiple StationsDownload PDFOpen Website

2022 (modified: 02 Nov 2022)IEEE Geosci. Remote. Sens. Lett. 2022Readers: Everyone
Abstract: This letter proposes a multiple station-based seismic event classification model using a deep convolution neural network (CNN) and graph convolution network (GCN). To classify various seismic events, such as natural earthquakes, artificial earthquakes, and noise, the proposed model consists of weight-shared convolution layers, graph convolution layers, and fully connected layers. We employed graph convolution layers in order to aggregate features from multiple stations. Representative experimental results with the Korean peninsula earthquake datasets from 2016 to 2019 showed that the proposed model is superior to the single-station based state-of the-art methods. Moreover, the proposed model significantly reduced false alarms when using continuous waveforms of long duration. The code is available at. <xref ref-type="fn" rid="fn1" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><sup>1</sup></xref>
0 Replies

Loading