Abstract: Camera calibration is a prerequisite for many computer vision applications. While a good calibration can turn a camera into a measurement device, it can also deteriorate a system’s performance if not done correctly. In the recent past, there have been great efforts to simplify the calibration process. Yet, inspection and evaluation of calibration results typically still requires expert knowledge. In this work, we introduce two novel methods to capture the fundamental error sources in camera calibration: systematic errors (biases) and remaining uncertainty (variance). Importantly, the proposed methods do not require capturing additional images and are independent of the camera model. We evaluate the methods on simulated and real data and demonstrate how a state-of-the-art system for guided calibration can be improved. In combination, the methods allow novice users to perform camera calibration and verify both the accuracy and precision.
0 Replies
Loading