On Margin-Based Cluster Recovery with Oracle QueriesDownload PDF

21 May 2021, 20:42 (edited 28 Jan 2022)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: theory of clustering, active learning, clustering in metric spaces, convex hulls, clustering stability, same-cluster queries
  • TL;DR: In several settings, we give necessary and sufficient conditions to actively learn a latent clustering using a logarithmic number of label queries.
  • Abstract: We study an active cluster recovery problem where, given a set of $n$ points and an oracle answering queries like ``are these two points in the same cluster?'', the task is to recover exactly all clusters using as few queries as possible. We begin by introducing a simple but general notion of margin between clusters that captures, as special cases, the margins used in previous works, the classic SVM margin, and standard notions of stability for center-based clusterings. Under our margin assumptions we design algorithms that, in a variety of settings, recover all clusters exactly using only $O(\log n)$ queries. For $\mathbb{R}^m$, we give an algorithm that recovers \emph{arbitrary} convex clusters, in polynomial time, and with a number of queries that is lower than the best existing algorithm by $\Theta(m^m)$ factors. For general pseudometric spaces, where clusters might not be convex or might not have any notion of shape, we give an algorithm that achieves the $O(\log n)$ query bound, and is provably near-optimal as a function of the packing number of the space. Finally, for clusterings realized by binary concept classes, we give a combinatorial characterization of recoverability with $O(\log n)$ queries, and we show that, for many concept classes in $\mathbb{R}^m$, this characterization is equivalent to our margin condition. Our results show a deep connection between cluster margins and active cluster recoverability.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
11 Replies

Loading