Keywords: universal online learning, gradient-variation regret
TL;DR: This work proposes a simple universal approach with the optimal gradient-variation regret guarantees.
Abstract: We investigate the problem of universal online learning with gradient-variation regret. Universal online learning aims to achieve regret guarantees without prior knowledge of the curvature of the online functions. Moreover, we study the problem-dependent gradient-variation regret as it plays a crucial role in bridging stochastic and adversarial optimization as well as game theory. In this work, we design a universal approach with the *optimal* gradient-variation regret simultaneously for strongly convex, exp-concave, and convex functions, thus addressing an open problem highlighted by [Yan et al. [2023]](https://openreview.net/forum?id=AA1xrgAP5z). Our approach is *simple* since it is algorithmically efficient-to-implement with a two-layer online ensemble structure and only $1$ gradient query per round, and theoretically easy-to-analyze with a novel and alternative analysis to the gradient-variation regret. Concretely, previous works on gradient variations require controlling the algorithmic stability, which is challenging and leads to sub-optimal regret and less efficient algorithm design. Our analysis overcomes this issue by using a Bregman divergence negative term from linearization and a useful smoothness property.
Primary Area: Online learning
Submission Number: 9867
Loading