The Price of Differential Privacy under Continual Observation

Published: 24 Apr 2023, Last Modified: 21 Jun 2023ICML 2023 OralPosterEveryoneRevisions
Abstract: We study the accuracy of differentially private mechanisms in the continual release model. A continual release mechanism receives a sensitive dataset as a stream of $T$ inputs and produces, after receiving each input, an output that is accurate for all the inputs received so far. We provide the first strong lower bounds on the error of continual release mechanisms. In particular, for two fundamental problems that are closely related to empirical risk minimization and widely studied and used in the standard (batch) model, we prove that the worst case error of every continual release algorithm is $\tilde \Omega(T^{1/3})$ times larger than that of the best batch algorithm. Previous work shows only a $\Omega(\log T)$ gap between the worst case error achievable in these two models. We also formulate a model that allows for adaptively selected inputs, thus capturing dependencies that arise in many applications of continual release. Even though, in general, both privacy and accuracy are harder to attain in this model, we show that our lower bounds are matched by the error of simple algorithms that work even for adaptively selected inputs.
Submission Number: 6033
Loading